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The phased periodic array scattering parameters [1] have been modified

and corrected for U5e as a single electrode, mixed units, scattering matrix

consisting of one electrical and tWO acousti2 ports. These scattering

parameter analytical expressions are functions of material constants,

electrode geometry, and frequency. The three port single electrode

scattering matrices are acoustically cascaded to produce a three port

device scattering matrix whiich takes into account all finger interactions

(acoustic and electric) for the combined effects of piezoelectric and

mechanical scattering. The analysis agrees Well with experimental

measurements of input admittance, electro-acoustiC transfer function, and

acoustic transmission and reflection coefficients as functions of

frequency. Analysis results for the complete modeling of transducers with

floating electrodes are also presented.
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I. Introduction

The modeling of surface acoustic wave transducers and reflectors has

been discussed by several authors. Each model is restricted to transducers

or reflectors and most are valid over a limited frequency range. This work

provides energy conservation based corrections for a mixed units scattering

matrix (1,2J recently derived from an infinite array analysis. This thesis

is the first publication to present results involving transducers with

floating electrodes and is a general analysis which models any periodic

device over all frequencies of interest.

This thesis presents a universal analysis of surface acoustic wave

transducers and finite length reflectors. The final result of this one

dimensional analysis is a 3 x 3 mixed units scattering matrix description

of a reflector or transducer whose parameters are functions of frequency.

This analysis:

*is applicable to all periodic structures, where metallization
ratio and/or electrode spacing may vary slowly in the direction
of propagation;

* models interdigital transducers, regardless of connection
circuitry, including arbitrary voltage electrodes, floating
electrodes, and electrically loaded reflector arrays;

* is valid for all frequencies of interest;

0 is based on analytical expressions involving material
constants, electrode geometry and individual electrode circuitry;

*provides the input admittance, electrical to acoustic transfer
function and acoustic to acoustic transfer function (transmission
and reflection);

0 is in a form that directly accepts a recently derived set of
mechanical scattering coefficients (27,281.
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A number Of Useful techniques have been developed to analyze SAW reflectors

and transducers. A brief summary of these techniques and their features

adds insight to the capabilities of this mixed units scattering matrix

approach.

Realizing that the location of interdigital electrodes corresponds to

the time delayed signal generated by an incident acoustic impulse, several

authors have described an impulse response model [3,8,29]. This model is

particularly applicable to weak coupling piezoelectric materials where tap

to tap interactions are neglected. The electro-acoustic transfer function

of each tap is assumed to be flat over the bandwidth of interest and the

tap weights are the Fourier transform of a desired frequency response,

making first order modeling a simple process. Hartmann extended this model

to include the calculation of transducer impedances and the effect of

electrical loading on filter response (second order regenerated

reflections) via an electrical port equivalent circuit (4,6]. He points

out that another frequency dependent acoustic source could be Engan's

Fourier series solution [7] for the electrostatic field produced by the

electrodes of an infinite array, but limited his analysis to the

fundamental response. Arrays which use overlap weighting with a fixed

voltage are modeled using a channelized approach similar to one described

by Tancrell and Holland [8].

In their initial strong coupling, transmission line analysis Smith et

al. [4I) presented two infinite array models ("in-line" and "crossed field")

derived from the Mason bulk wave transducer equivalent circuit [5]. The

selection between the two approaches is based either upon the predominance

of an electric field normal or parallel to the surface. Smith and Pedler
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[9) extended this work by introducing 1) quarter wavelength transmission

line sections of different impedances (values are empirically derived)

representing the electrodes and gaps to model acoustic reflections, 2)

Engan's source field into their crossed field Mason bulk wave model to

f analyze harmonics, and 3) Missing electrodes and end effects cases to

handle finite length arrays. Their source function is the derivative of

the normal electric field component with respect to the direction of

propagation along the surface. This new source field extends the analysis

accurately to odd harmonic operation. The field equations were solved for

a number of electrode connection sequences, taking into account next

nearest neighbors. The results are presented in tabular form and are handyI for design of periodic polarity sequence transducers. The authors suggest

that the case of floating electrodes with induced charges is handled by

numerically resolving the electrostatic boundary value problem.

Although Smith and Pedler's tables are accurate near odd harmonics,

Szabo realized the need for inter-harmonic frequency analysis and applied a

Fourier transform of the displacement field as the source function in the

spectral weighting model [10]. A set of electro-acoustic transfer

functions are calculated numerically using field theory for a number of

local electrode environments. These frequency domain curves replace the

flat passband response of the delta functions used in the impulse response

models and serve as the mathematical link between such models and

experimental device behavior. The curves are used in a design prescription

to calculate the tap weights for a given frequency response. Closed form

expressions of these transfer functions for structures other than arrays of

single electrodes are difficult to obtain analytically.
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The advent of floating electrodes and capacity weighted transducers

brought about the need for a new model which does not require numerically

recalculating the field solution for each possible electrode voltage

configuration. Datta et al. [11] point out that in general, for the

impulse response model, the separation of the transducer response into an

element factor and an array factor is not possible, since the charge

distribution on each electrode is different because of neighboring

electrode effects. They calculated an element factor, referred to as the

basic charge distribution, defined as the charge induced in a grounded

array with one volt applied to the center tap. The basic charge

distribution does not change from tap to tap and extends the impulse model

to all harmonics, taking next nearest neighbors into account. This

approach, based on closed-form field theory solutions, accurately models

the electro-acoustic response of arbitrary electrode voltages and apodized

transducers. The weak coupling approximation, on which this work is based,

does not allow the prediction of acoustic reflections and frequency shift

due to the local electrode shorting of the acoustic potential wave on

highly piezoelectric substrates.

Aoki and Ingebrigsten [12] recognized the importance of reflections

and frequency shift in an infinite array. They derived the equivalent

circuit parameters of the "mixed circuit" model (a modification of Smith's

"in-line" model) from the closed form field theory dispersion relations

near resonance to obtain a non-empirically based transmission line model.

Although neighbor coupling effects when arbitrary voltages are applied (as

in floating electrodes and capacity weighted transducers) are neglected,

this dispersion relation based (strong coupling) model correctly predicts

the transducer acoustic reflection coefficient magnitude as a function of

I
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frequency. This analysis agrees well with experiment near the odd

stopbands. The cascaded "mixed circuits" do not produce a stopband at the

even harmonics as field theory suggests, therefore Aoki and Hattori [13]

added a stored energy "shunt-susceptance transmission-line" model for use

at the even harmonics and showed good agreement with experiment for special

transducer configurations.

A traveling acoustic wave creates a set of phased voltages on an array

of electrodes if acoustic reflections are assumed negligible. The phase

difference between electrodes is constant for a given frequency. The

scattering matrix of a single electrode in this infinite periodic, phased

voltage, environment has been calculated from field theory by Datta and

Hunsinger [1]. The scattering matrix elements are analytical expressions

which are functions of frequency, metallization ratio, and substrate

parameters. The analysis works well on reflectors and multistrip couplers

(passive), but does not address the case of transducers in which an

arbitrary voltage is applied to each electrode, nor to fixed tap weight

transducers at non-synchronous frequencies.

These single electrode piezoelectric scattering coefficients for

infinite periodic arrays (l] have been modified for modeling finite length

periodic transducer and reflector structures. A single electrode is

represented as a 3 x 3 mixed units scattering matrix. These matrices are

cascaded (via acoustic ports) to form an N+2 by 3 matrix that describes the

device. This matrix is then compacted into a 3 x 3 matrix which completely

defines the three port transducer or two port finite length reflector

without the use of special case look-up tables or curves. The analysis is

based on piezoelectric and mechanical parameters, accounting for both

M



6

scattering mechanisms in slowly varying, periodic structures with arbitrary

voltages.

In section II. the modifications to the single element scattering

parameters along with the conditions required for cascading are described,

while the cascading procedure is described in section III. The

interpretation of the Composite scattering matrix is discussed in section

IV. along with a detailed comparison of the analysis with experimental

results for reflectors and single (solid) and double (split) electrode

transducers with varying loads at any frequency. This section includes a

comparison of experiment with theory when the added mechanical scattering

is taken into account. Transducers with floating electrodes are discussed

in section V., with a conclusion in section VI.
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I. Single Electrode Mixed Units Scattering Parameters

This section describes how the scattering parameters Em') for a phased

array transducer (Fig. 1a) are applied to determine the mixed Units

scattering matrix [m] for a single electrode unit cell in a grounded array

(Fig. ib). The mixed units scattering matrix characterizes the three port

unit cell. The two acoustic ports are characterized by positive and

negative traveling acoustic waves, while the electrical port is defined in

terms of the most conveniently measured parameters, voltage and current.

The mixed units scattering parameters for the single electrode, unit cell

are of the form

i l 1 2  n1 3  A]

A i+n 2 2 2  m 2 3 ] B i+i1(

LI i L.1 32 '331, Lv1

where Ai is the positive propagating wave (open surface electrical

potential) as it enters the it h electrode, B,.I is the negative propagating

wave and Ii is the current induced. The unit cell has the properties of

being symmetrical and lossless. The parameters M11 a M22' m1 2 = M21' and

mi are dimensionless while m =., and m3 3 have the units of mhos.13 =223 . =im32  m3

Also, M 13 is related to m31 by a constant (derived in Appendix I.B.).

The single electrode scattering matrix is evaluated from the

previously derived phased array results by noting that the single tap and

phased array transducers are identical when the impressed voltage (VO )

equals zero. This allows the first two columns of the Em] matrix to be set

equal to their phased array matrix counterparts (equation (23) in E1]).

. .,
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When a voltage is applied to one electrode in a grounded array a

charge distribution is induced under all adjacent electrodes. Acoustic

waves are generated by each of the charged electrodes and the total wave

generated is the sum of all the contributions (A') as shown in Fig. 1c.

The electro-acoustic transfer function (a13 * *2) of the ith electrode in

a grounded array is defined in terms of the total acoustic wave generated

due to the voltage applied. The model assumes that the entire wave is

generated in the ith electrode. Each contribution of A' is phase shifted

to the center of the ith electrode and summed to give the total

electro-acoustic transfer function. The equations for m13 and m23 are the

charge distribution (a (s,A ), equation (M) in C2]) multipied by the

factor ( Av/v)(p/EE) where A v/v is half the piezoelectric coupling

coefficient, p is the spacing between electrodes and E p E is the

effective substrate dielectric constant.

The current entering the electrode when no incident acoustic waves are

present is represented by a complex number (m33 derived in section II.B.).

The real part arises due to electrical to acoustic power conversion which

is proportional to the coupling coefficient. The imaginary part is the

electrostatic capacitive admittance based on the non-piezoelectric

properties of the material. For simple periodic voltage transducers

(ie. single or double electrode) this capacitance is the capacitance per

pair (for example, see equation (14) in [6]), while for devices with

arbitrary voltage electrodes, an inter-electrode capacitive admittance

matrix (derived from equation (8) and (9) in [2)) is added during the

cascading process (section V.).

4 4.A $.. .... . .
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The weak coupling scattering parameters Cm'] (referenced to the

electrode center) are tabulated here for convenience.

Acoustic dependent

1 1M'22 Jl uI. 2v(ss+).

N N-rn

(-t) P (-cosA) P(Ccossa) -

"~@ LP$co4 N- L -com A) .

(2b)

'31 2 32 ,jw (Ep E0) +. 2n(s 4).

_ (-1)'Ps ( -cos ,) P.(-cosA).
x3 LPN - (cos) + ps 5 1 (-cosA) N

(2c)

Voltage dependent

I..t 2siun P, (co.A) (d13 '23 _ p s1 (.cosA) P (CS

where
PM is the nth Legendre polynomial

AviV is the half the piezoelectric coupling coefficient

I a integer(2f/fo()

fo • open surhace velocity/electrode spacling v/2p

1 I.
4

N 2. ,i ,, 0 ). ". . ... .

f opn srfac veociy/elctrdO pacig xv/2
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s 2ff - N0

A ir 1 ( ' being the metallisation ratio)

* is the normalized radian frequency

E is the substrate dielectric constant
p

W is the acoustic beam width

The at values are found from equations (9) and (24) in [1]. The derivation

of m33 is found in section II.B.

This Em'] matrix uses the weak coupling approximation which assumes

that the incident (or generated) wave amplitude is constant while

traversing the electrode region. This approximation is quite good, however

a close inspection of the Em') matrix will show that energy conservation is

not precisely maintained (Im 12 20 1). Any errors in the

original single electrode matrix are accumulated and magnified by the

cascading process. Therefore, the initial terms Em') are corrected (to

Em]) by accounting for wave growth under the electrode. A first order

effect (2b) is the phase shift (8 = JA) of m'21. As will be shown, the

second order correction requires a decrease in the magnitude of m'21* The

problem separates into the shorted case (acoustic terms only) and the

externally electrical loaded electrode case.

---- - Nm -
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A. Shorted Case

The shorted case involves only the acoustic terms of the mixed unit

scattering matrix [m] (essentially an acoustic 2-port), therefore only the

upper left corner is addressed

2 A(3)
A ml]2 [B2_

The conditions of losslessness for a 2-port require that the net input

power to a lossless-passive junction be zero for any combination of

excitation possible. That is, there is no energy absorbed in the junction.

Therefore, all of the terms of the 2 x 2 scattering hermitian matrix are

set to zero (equation (2.22) in [23J). Hence, there are four lossless

conditions:

2 21 ,- 11 - =1 0 ( 4 a )
Z01 Z0 2

0 0

a 11212 + m 2 1m2 2 . 0 (4b)
Z 01 Z02

1 - m2 2  - 'm1 2  = 0 (4c)
Z01 Z02

* C

m 12m1 + m 2 2m21 = 0 (4d)

Z01 Z02



13

where Z01 and Z02 are the transmission line impedances at their respective

ports.

These equations with Z0 1 equal to Z02 for a symmetrical two port (ml,

=m 2 2 and m12 2 m21) reduce to two equivalent and more revealing forms to

be satisfied (equation (2.25) in [23]):

1 - M11 i 2 _ 1 2 Z 0 (5a)

and

812 - a11 + (2n-1) n/2. (5b)

The modification of the acoustic terms involves calculating corrected

values of 1) the magnitude of m2 1, 2) the angle of m21 and 3) the angle of

m11. The transmission vector of a unit cell without a scattering element

(no electrode) is the unit vector t' in Fig. 2. When an electrode is

introduced into the unit cell, part of the transmitted wave is continuously

scattered as the wave travels under the electrode. The electrode is

conceptually divided into many point sources, each being a scatterer of

acoustic waves (small arrows in Fig. 2a). The reflections from each

section (reverse scattering) experience phase shifts (with refernce to the

electrode center) and therefore are summed as phasors (Fig. 2a) to produce

mt II* The weak coupling approximation assumes that the transmitted wave

traverses each section of the electrode unscattered and accounts for the

total forward scattering with the addition of an imaginary scattered wave

(JA) generated by the electrode (Fig. 2a). This term is negative due to

the localized electric field shorting which slows the wave as it propagates

under the electrode. When 8 = JA is added to the unit transmission vector,

the energy balance (5a) is not satisfied because the magnitude of m' 2 1 (:
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t'M1

(a)

t'--1

621 i 21

KP-IwS1

(b)

Figure 2. Scattering coefficient vector addition, acoustic terms,

shorted case. (a) Weak coupling approximation. (b) Energy conservation

correction.

.. jA. .
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11 + J6 ) is greater than one. Therefore, 6 is rotated (see Fig. 2b) to

form one side of a triangle composed of 181, the unit vector and the

magnitude of m21 (as yet unknown).

The first correction is the calculation of the transmitted wave vector

(m2 1 ) magnitude. This second order correction (decrease in magnitude of

MI2 1 ) is very small. The magnitude of acoustic reflection (m'1 ) is also
J. 11)isa o

affected by this second order correction (ie. change in all scattering

element magnitudes), but since m' 1 1 << im, 211 the absolute error in

' is near zero (as is the error for all im' , ij 12 or 21). The

magnitude of m 2 1 is then calculated using (5a) and the magnitude of m' 1 .

The second step involves calculating the phase angle of the

transmitted wave vector angle (021) using the unit transmission vector,

6 : and im2 1 :. The law of cosines is applied to the triangle formed by

these three vectors (Fig. 2b)
1 im 21 :2 2 - 2-

221 2 Cos (6)
in21:I 1

giving the angle of m 2 1 referenced to the electrode center. The

transmission phase delay across the unit cell is implemented by adding a

Tf/f phase shift, thus giving the corrected angle of m 2 1 . Equation (5b)

for a symmetrical two port results in m 1 1 - m21 and m2 2 - m1 2 . Therefore for

the third correction (5b), the angle of m 11 is adjusted to be Tr/2 radians

from e2 1 . The two port acoustic scattering matrix now satisfies the

lossless conditions.
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B. Externally Electrical Loaded Electrode Case

At this point there are 6 corrections remaining: the angles of m13 ,

m 2 3 , m31, m32 and the complex value of m 3 3 . Taking the solution of m 3 3

first, from energy considerations it is shown in appendix I.A. that the

electrical port radiation conductance is

Ga = Re(m 3 3) .5(m 13 i 3 1 + m2 3m*3 2 ) (7)

If Z0 is defined as the characteristic electro-acoustic impedance:

'A 2 (8)

2 Pa

where A, is the open surface electric potential and Pa is the total

acoustic power flow, then using (appendix I.B.)

m 13 = - Z m 3 1  (9)

2

we find that

G a 2 m 13m 3 1  (10)a
zo

for a symmetrical lossless 3-port and is independent of any scattering

coefficient angle. The imaginary part of electrical port input admittance

arises from both electrostatic (capacitive) and acoustic generation. The

acoustic contribution (B a) is the Hilbert transform of the real electrical

port admittance [303. For a single electrode the value of B is near zero,a

because the Hilbert transform of a slowly varying G is very small.a

Therefore, the Imaginary part of m33 is only the admittance due to the

capacitance of the unit cell electrode. For a single electrode transducer,
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the capacitance of an electrode pair (C ) is equal to the capacitance of

one electrode in an alternately connected array. The total single

electrode admittance is then

m3 3  2 m1 3 m 3 1 + J (11)

Zo

The solution of the 4 unknown electro-acoustic angles is now

addressed. The problem is simplified by the property of a symmetrical

3-port in which

mad in32  (12a)

and 
3 3

m 13  i2 3  (12b)

These two equations along with (9) reduce the problem to one unknown angle

(for instance, 013) from which the three other angles are found.

The solution of an equation containing e13 (= arg(m 13)) involves

finding the 2-port matrix equivalent to the 3-port matrix when the third

port is electrically terminated in a load (YL). Mathematically, the load

is absorbed into the third port electrical admittance. Setting the

electrical port external current equal to the load current (-VYL) and

solving for the normalized voltage at that port induced by an incoming

acoustic wave (note B2  0 0) gives:

1 Fin11 in12 in13  FA 1
A 2 l e21 m2 m23 (13)

-V L Lm31 m32 m33

The last equation
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-VYL = m31Al * m33V (14a)

after re-arrangement and the use of (8), produces the normalized voltage

V = X -2 m1 3

(4b)
A '33 YL ZO(m 33*+YL)

Inserting this relation into the first row as the generating voltage gives

the reflection coefficient (ml el)

+m V i 2 m (15a)11 13 m
A1  A1  ZO (m33+YL )

Similarly, for the transmitted wave

A2 m21 - 2 213 m2lel (15b)

A1  Z0 (m33 +YL )

Therefore the electrically loaded acoustic scattering matrix (supression of

the third port) is represented as

FBI] in11el ml2el] F Al

A2 m21el M22el B2

The same symmetrical lossless 2-port equations (5a,b) apply to this

matrix. Equation (5a)

'm +m 21e 1, 1 = 0 (17a)

is now
2 2 2 2 2

Mll 2 m13 2 im2 1  2 m13 - 1 = 0 (17b)

Z0 (m33+YL) Z0 (m 3 3 YL)



which simplifies to

Re(m11 + M2 1 ) Cos a13 + Im(m11 + m21) sin 813 12 3 3 2 0

iZ0 (m33 +L 0
1

(17c)

j giving e 2F-..-C5l1 ( 3 Y)i
e13 z 2 9 3 

+ e(m11m1 - c0s-1 12 m 1321(Zo0(m33 +YL))

13 ~ ~ L L + m1  jj (17d)

The resulting angle and the use of (9) and (12) give the values of the four

unknown angles. As a check, the angle of m 11el is compared with the angle

of m2 1e, and found to satisfy (5b).

In summary, the corrected mixed units scattering coefficients

referenced to the edges of the unit cell (Fig. Ib) are:

m1 ll 2m22=z Ira' 11l e J(812 -+ T/2 ) e-JTf/fo (18a)

m21 2 m12  1 - im' 11:2) 1/2 eJO12 e-JVtf/f0 (18b)

m 13 = 2 3 = 3' i eJ13 e-jnf/2f o (18c)

m3 1 z m3 2 = im' 3 1  eJ(913  " e-jnf/2fo (18d)

m33 = Ga + Jw Cp (18e)

tp
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These single electrode scattering matrix coefficients conserve energy

for acoustic reflection, generation and detection. In the calculation of a

finite length device matrix, many single electrode matrices are cascaded

and the final device matrix satisfies the three port energy conservation

equations (equation (2.165) in (26]).

I2

, 4
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III. Composite Transducer Matrix

A. Cascading

In order to analyze an entire transducer, the effects of individual

fingers and their interactions must be combined, while taking into account

the finger connection sequence. This is done by cascading 3-port mixed

units, single electrode Em] scattering matrices (18) and then compacting

the final matrix into a 3 x 3 matrix [M] describing the total array

(Fig. 3).

[B1 [M11  M 12  M 13] FALA: N+ Lz::2 M 22 M 23 B+1(19)LT J L31 M32 M33-1 LT J

The scattering matrix cascading process starts with a single element

scattering matrix [m ] (Fig. 4, equation (20)). This matrix is combined

with another adjacent m 2] matrix which may be different than the first.

B 1  m 1 m 12 m 13 A 1  FB 2 l F 11 12 m [3A2 ]

A r 1 1 1 BiF 2 2 B (0

I m 1 m3 21 mAIJV 2 32 L ~
ALj 1 J L1 322 31 L i- -2]J L231  232 M3 2 0

The acoustic interface between the two unit cells contains two unknown

interacting acoustic waves A2 and B2 . The two sets of scattering equations

(20) also have two equations relating A2 and 82. These 2 equations and 2

unknowns are solved for A2 and B2 in terms of Al, B3, V1 and V2. These are

- ,. .-
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Figure 3. Generalized weighted transducer driven by balanced voltage

source.
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Al1 A A3

6p B3

Figure 4. Two electrodes with interacting acoustic potentials.
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substituted into their respective locations and a new 4 x 4 scatter matrix

is produced which relates the electrode pair input quantities to the output

quantities.

B1 I11 M 12  "t13 "4 A11

A3 m21 m 22  m 23  m24 B3 (21)

I1 m 31 mn32  mn33  in 34  v1

12 ti41 m42 "43 " 4 4  V2

This new matrix describing the electrode pair now becomes the left

matrix and another 3 x 3 matrix representing the third electrode is

combined with it. Each matrix has an equation relating the interacting

acoustic potentials (now A3 and B3 ) in terms of A, B4, V I, V2 , and V3 .

The 2 equations with 2 unknowns are solved and a new 5 x 5 scattering

matrix for the electrode triplet is created. This process continues until

the final N+2 by N 2 array scattering matrix is found for an N electrode

device (Fig. 3).

B1 m~ 11m12 m 13 .m1 7 A 1

AN l "21 "22 "23 "24 BN l

1 31 m 32  33  m34 V1

2 m41 "2 m43 m44  V2 (22)

N .. . .. ... _ VN
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As stated previously, for devices with periodic electrode voltages, the

capacitive admittance is included in the single electrode scattering

matrix. For devices with arbitrary voltages, a sub matrix of capacitive

admittances (D nfrom equations (8), (9) in (2J) is added to the admittance

sub matrix due to acoustic generation (dashed line in (22)). That is, for

i>2 and J>2

mUtotal 2 Mi acoustic . Dja~ (23)

This matrix (22) completely describes the interactions between the incoming

acoustic traveling wave potentials, the voltages impressed on the

electrodes and the outgoing acoustic traveling wave potentials and the

electric port induced currents. Appendix II. contains a more detailed

description of the cascading process.



26

B. Compacting

The array soattaring matrix can describe any periodic surface wave

device taking into account the connection sequence. In an interdigital

transducer (IDT) the electrode connection sequence (and therefore each tap

voltage) is known apriori. Each of the electrode voltages is related to

the terminal voltage (VT) by a voltage tap weight ai (Fig. 3), where

ai=(Vi/VT) (24)

Therefore in (22), m1,i>2 may be replaced by

mj13 2 m13a, m 14a2 + m15a3 +

(25)

"23 = m2 3 a, + m24a 2 + m2 5 a3 +"'

and the n>2 columns are compacted into one.

B mli 12 "' 13 A l

AN m21 i 2 2  '23 I

I m 31 m32 "33 LVT J

12 I m41 m42 "'43

S•(26)

LIN J
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Therefore, if the tap voltages are known, the largest matrix is N 2 by 3

(as shown in appendix II.).

This matrix is compacted by row as well. The terminal current (IT in

Fig. 3) is the sum of the currents in the electrodes connected to one bus

bar. This current compacting is approached in much the same way as the

voltage compacting. Let bi be the current tap weight, that is the portion

of the electrode current generated by the incident acoustic wave that flows

into the positive bus bar (ie. high side, IT in Fig. 3). In most IDT

structures (but not capacitive weighted) bi will be either 0 or 1. In a

single electrode IDT every other bi is 1 because every other electrode is

connected to the high side. Therefore, m3 i>2 is replaced by

= 3 1 b1 + m4 b2  3

32 = m32b1 
+ m42b2 

+ m5 2b3 + "'" (27)

M 33 = M'33 bl 
+ m#43b2 

+ m'53b3 
+

and the m>2 rows are compacted into one.

F1i [M11 12  i 131FA 1
A 1 m21 M22 M1231 BN+11 (28)

LT J L" 31 m"32  m 3 J LT J

The result is the desired 3 x 3 mixed units scattering matrix (19) which

completely describes the transducer as a three port.
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IV. Scattering Matrix Analysis of Transducers and Reflectors

The inowledge of the total scattering matrix for a given surface wave

device tap configuration is a very powerful analysis tool. A number of

examples will be examined to show its usefulness.

A. Transducer Acoustic Reflection Coefficient

The acoustic reflection coefficient of an electrically loaded

transducer is derived from the array scatter matrix (19), (28). The

shorted transducer (VT a 0) reflection coefficient due to MEL reflections0

is M 11 . The reflection coefficient of an electrode (or transducer) loaded

by an admittance is composed of two parts, the MEL reflection and a

regenerated wave. This regenerated wave is produced by the induced voltage

at the electrical port arising from an incident wave. To calculate this

voltage for the case of a transducer, BN 1 is set equal to zero, IT is the

load current (-VTYL) and VT is solved for as in the single electrode case

(13), (14) and (15). The M matrix equations are written as

B M1 1A I + M V
13 T (29)

-VTYL M31A, + (M33+YL)VT

Solving the second equation for the terminal voltage gives

VT 3 1 A I

M3 3+YL (30)

Inserting this into the first equation results in

B 1 2 M11 A1 - M 13M3 1 A1

M 33 YL
(3a

Reflections from shorted electrodes (Mechanical-Electrical Loading).
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and the electrically loaded reflection coefficient is

el 2 M11  - M13M31 (31b)

M3 3+YL

As an example, the complex reflectance for a 20-pair, single electrode

(Fig. 5, inset), 0.5 duty factor (metallization ratio) uniform weighted

transducer on Y-Z lithium niobate [14) is plotted for two loads in Fig. 5.

These calculations show a calculated frequency dependent reflection

coefficient whose shape has good agreement with experiment. The authors

[15) attributed a similar difference in magnitude between theory and

experiment to the measurement method. This calculated response also agrees

with that calculated by Aoki and Ingebrigsten (Fig. 4 in [12)).

B. Transducer Radiation Conductance

The transducer radiation conductance Ga (the real part of M3 3)

includes the effects of regeneration, stored energy and other tap

interactions. The input conductance of a 78-pair, 0.5 duty factor,

unweighted linear transducer on Y-Z lithium niobate has been calculated and

is compared in Fig. 6 with the experimental results for a 30 MHz device

[16). The theoretical calculation agrees very well with experiment.

Previous theories did not predict the velocity change under the electrodes.

Although Jones et al. had calculated the magnitude accurately, they were

not able to predict the 1.7% frequency shift down from f without any

post-calculation fitting.
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J32
Calculated radiation conductance for a 15-pair, 0.5 duty factor,

double electrode transducer is plotted in Fig. T and shows good agreement

with experiment (201. The center frequency of this device is assumed to be

49.44 MHz.

C. Reflector Analysis

The scattering mat:'ix approach lends itself readily to the analysis of

reflectors. The acoustic reflection coefficient of a shorted reflector is

the same as that of a shorted transducer. The reflection coefficient of an

open isolated electrode reflector is unlike that of an open circuited (no

load) transducer, although the reflection meclanisms (ME~L and regenerated

wave) are the same. In the case Of isolated electrodes, each electrode

operates as an independent (no electrical load) reflector whose induced

voltage is a function of the incident acoustic potential. It is conve-

nient here to introduce a neutral reference potential. For an IDT this

neutral reference is located half way between electrodes of opposite polarity,

so that one half the terminal voltage exists between each terminal and neu-

tral. Admittances are now defined from each electrode to the neutral refer-

ence. At fundamental the capacitance of each electrode to the neutral

reference is twice the electrode to electrode capacitance used previously.

M 33 is :Ga + 2jwC p (32)

The single electrode three port is reduced to a two port by supressing the

electrical port. The electrically loaded equations (14-16) (Y =0) areL.

evaluated with the isolated admittance (32) and replace the shorted

acoustic terms (3) in the single electrode scattering matrix Em]
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m 13a1 i 13M32ml 112

'33 iso m33 iso
(33)

m 1 m23'31 22-m 23M32

m33 iso m3 3 iso

This two port matrix completely defines the open circuit, three port, unit

cell in an isolated array.

As an example, consider the case of one electrode in an infinite

array. At center frequency the single electrode acoustic reflection

coefficient magnitude for the open and short circuit cases are equal (at

0.5 duty factor) and on Y-Z lithium niobate the value of 0.01647 agrees

well with experimental results (16-19]. For the case of double electrodes

(ie. 0.5 duty factor electrodes connected in pairs), the calculated

coupling coefficient at fundamental is reduced by a factor of 0.736 from

the single electrode case. This predicts a piezoelectric transducer

coupling factor K. = (0.046X0.736)I/2 = 0.184 compared to the experimental

value of 0.193 [12).

To find the reflection and transmission coefficients of isolated

electrode arrays, the single electrode scattering matrix (33) is cascaded

as in section III.A. (the non-acoustic terms are set equal to zero). The

calculated array acoustic transmission coefficients (shorted and open

cases) are compared with experiment [21) (bars) for three duty factors in

Fig. 8. The device is a 100 electrode array on Y-Z lithium niobate. The

experimental values of single electrode normalized impedance (z in [21])

are used in the author's transmission line equation (with N = 100 and duty
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Figure 8. Transmission coefficient versus duty factor for a shorted

and open (isolated) 100 electrode reflector on Y-Z lithium niobate.
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factor a tm (author's notation) 0.5) to calculate the array reflection

and transmission coefficients:

= Z' - 1 = (1 - : 2)1/2  (34)

g, + 1

where z' z2N for the short circuit and z' z-2N for the open circuit

case. Good agreement with experiment is found in Fig. 9 where the
transmission coefficient (T = 100log10 (M 1)) of this 100 electrode array is

plotted versus frequency.

The device transmission coefficient (M2 1) is a complex number whose phase

describes the dispersion of finite length reflector and transducer arrays.

The fractional acoustic transmission coefficient phase shift (A02 1/02 1) is

defined as

-21 f/fo -

where Nrrf/f is the open surface phase delay. This fractional phase shift

is equal to the fractional shift in velocity Av/v and is compared with

experiment (duty factor = 0.5) (22] in Fig. 10 for an 80 electrode

device on Y-Z lithium niobate at three duty factors. This calculation is

for three possible electrode connection sequences: all connected (shorted)

in Fig. 10a, every other electrode connected together (open circuit IDT) in

Fig. 10b, and all electrodes unconnected (isolated array) in Fig. 10c. The

highly dispersive nature of the curves near the fundamental and second

harmonic is evidence of a large number of reflections in the arrays. This

region is denoted as a stopband. It is interesting to note that the

.I.
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shorted and open transducers (Fig. 10a and b, respectively) have identical

dispersion characteristics out of this band. The value of &v/v at the

fundamental stopband corresponds to the 1.7% fractional shift in frequency

evident in all the devices discussed (for example, see Fig. 6). All three

connection sequences display the presence of a second harmonic stopband

which is also shifted downward in frequency.

D. Mechanically Loaded Transducers

A recently derived method of calculating the mechanical scattering

coefficients (27,281 allows this scattering matrix cascading process to

include the effects of elastic loading, mass loading, and stored energy in

thick electrodes, grooves and buried electrodes. The mechanical

coefficients (as in the piezoelectric case (2a,b)) are reflection

coefficient and transmission phase shift for the unit cell and are composed

of contributions due to linear (impedance mismatch) and quadratic (stored

energy) effects

n11 mech J(r 1 (h/X) + r 2 (h/X) 2 )

21 mech J(AI(h/A) + 42 ( h / X) 2 ) (36)

and at the present are valid for frequencies about the harmonics. The

derivation of these constants (rl, r2, A1, A2 ) is found in reference 28

(specifically equations 24 and 26) and first order examples of the

calculations are found in reference 27. The mechanical coefficients (36)

are added to the initial piezoelectric scattering coefficients (from

(2a,b), where JA 21 piezo JA from m' 2 1 ) to give the composite terms

lt11 total = 11 piezo + m11 mech
(37)

Jh21 total = J21 piezo J 2 1 mech

.. . ,. . - - ' i , 1 1 R I I I I
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which are used in the energy balance (5,6), thereby effecting a couplete

scattering analysis.

An example of the mechanical scattering contribution is shown in

Fig. 11 where the calculated input radiation conductance is plotted versus

frequency. This is compared with experiment £24] for a 10-pair, single

electrode interdigital transducer (duty factor a 0.5). The major

reflection mechanism of the transducer in Fig. 11a with 1500 2 thick

aluminum electrodes is piezoelectric loading (localized shorting of the

traveling potenial wave under the electrode). The effect of combined
0

piezoelectric and mechanical loading is shown in Fig. 11b where 750 A of

gold has been added to the transducer of Fig. 11a. Although the calculated

magnitudes are high, the frequency shifts of the upper zeroes are

accurately predicted by this analysis. Many authors have attributed

lowered experimental magnitudes to scattering into bulk waves and viscous

dampening of the surface wave.
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V. Transducers with Fl~oating Electrodes

Transducers whose electrodes are individually connected to external

loads and/or each other are analyzed in a straight-forward manner using

this generalized scattering matrix approach. The discussion Of section

III. dealt with electrodes whose Voltages were known apriori, whereas this

section deals with transducers which contain contain floating (unconnected)

electrodes in combination with connected electrodes. Reflector arrays Of

I floating (isolated) electrodes have been treated in section IV.D. where the

current through each electrically unloaded electrode Was a known value

(zero). This section addresses itself to a similar problem (each floating

electrode current equals zero), but uses circuit analysis techniques to

determine the unknown voltages. These voltages are then used to derive the

3 x 3 matrix CM] by solving for the individual scattering parameters in a

manner similar to the compacting sequence Of section III. Although the

floating electrodes discussed are electrically Isolated, this is in fact a

specific case of electrodes which are externally electrically loaded. tIn

another case, the electrodes could be connected in groups to a load (load cur-

rent - V T YL) or to individual loads Y UP where the load crent eqa - Li'

As an example, consider a solid electrode interdigital transducer with

a floating electrode placed between each transducer electrode (the

split-isolated transducer, Fig. 12 inset). The relationships between the

unconnected electrode voltages (voltage tap weights) are not known, as Was

the case for the transducer discussed in section III., therefore the

current (ie. admittance/voltage) of an electrode in this array of unknown

voltages cannot be calculated directly (as was the case in (11)).
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The derivation of CM] begins by cascading single electrode matrices

(m] which have no capacitive electrostatic admittance (C=O). This general

matrix (similar to (22))

B1 i 1 1  m 12  in13  M14 7 1

AN+I m2 1 m22 m2 3 m2 4 . . BN+1

1 i3 1 m32 m33 m34 • . V1

I2 '1 m42 m 43 m44 " (38)

_N _ . .. V _

models all the relationships (except capacitive coupling) between the

electrodes. The admittance terms enclosed by the dashed line are the

cascaded complex admittances (Ga + JBa). Added to this sub-matrix is an

inter-electrode capacitive admittance (calculated from equations (8), (9)

in [2]) which models the capacitive coupling between the electrodes.

The first step in the solution of the floating electrode voltages is

to combine the rows and columns associated with the transducer (connected)

electrodes. This is done using the same technique as in section III.B.

The matrix is now a function of two types of acoustically induced

potentials, a terminal (transducer) voltage (VT) and a set of floating

electrode voltages (VF1 through VFf).
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B 11 m 12 m13 m14 1

AN+1 m21 m22 m23 m24 • BNIT  m31 '32 '33 m34 ... VT
0 - m41 m42 m43 M4 ... VF1 (39)

_ J L . . VF

Note, there may be more than one terminal voltage if the transducer has

multiple groups of taps connected together (ie. group-type

unidirectional).

An examination of (39) shows that the induced currents (and hence, the

floating electrode voltages) are functions of each other, the terminal

voltage and the incident acoustic waves. There are three different sets of

floating voltages corresponding to the three possible excitation sources

(VT, Al, BN+l), each taken one at a time. For example, the value of M13 is

defined as the traveling acoustic wave emerging from the left port due to

the terminal voltage applied with the incident waves absent.

The second step is to use one of the excitation sources as the

appropriate bondary condition and solve the admittance sub-matrix for the

three sets of floating voltages. This is done by multiplying the first

three columns (39) by the appropriate boundary conditions (each 0 or 1).

The Gauss-Seidel iteration method [25] is used three separate times to

solve this new f by f+3 sub-matrix for the unknown floating electrode

voltages. The inversion of the admittance matrix is not required and
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consequently very large matrices may be analyzed.

The third step is to solve for the device matrix [M] by using the

floating electrode voltages in (40) to combine the columns and rows as in

section III. (for an unconnected electrode bi is 0). This is done for each

of the three excitation sources.

As an example, consider the solution of the first column in the device

matrix (M11 , M21' M31 ). These scattering parameters are defined as the two

acoustic waves and terminal current produced by an incident acoustic wave

from the left when the device is shorted (in this split-isolated case, a

shorted transducer) and the incident wave from the right is not present.

Let BN+l and VT equal zero and the incident wave (A1 ) equal one.

B 1 in11 in12 in13 m 14. .. 1

A im2 1 m22 mi2 3 '2 4

IT m 3 1 m3 2 m3 3 m34

0 mi4 1 m42 m 43 m4 . . . VFl: (40)

0 -J . . . IVFC

After multiplication of the first three columns (accounting for the

boundary conditions) the sub matrix is
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i4 1 0 0 m 0 m45  m46 . . M4,f+3

m 51 0 0 m54 m 5 5  m56 . . . ms,f+3

m61 0 0 m64  i65  m66 . . m6,f+3

(41)

f 00 f4 mf5 mf6 . . . mf,f+3

After solving the floating voltages from these f equations, the desired

coefficients are the first three rows (m:l, 2, 3) multiplied by the

external boundary conditions and the potentials:

M M #1"I + m12*0 + m130 + m14 *VF1 . . + m f*VFf

M21 2 m21 m22"0 + m23"0 + m24 *VF1 + + m2f*VFf (42)
M31 = m3111 + m320 + m33"0 + m34*VF1 + + m 3flVFf

Similar steps are taken to derive the other six device matrix [M]

parameters. This matrix

B1] 1 12 M13 A~ M14

A + = 21 M22 M23  B N+1 (43)

T31 M32 M3 3 - T

completely defines the transducer with floating electrodes and is used to

derive the electrically loaded parameters via (29-31).
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A comparison of the calculated acoustic reflection coefficient with

that measured for a 20 wavelength split-isolated transducer (duty factor

0.5) on Y-Z lithium niobate (Fig. 12) [141 shows good agreement with

experiment for the cases of short (rsc = M11) and open circuit (roc z M1 e

M13M3 1/M33, from (31)) transducers. The difference between experimental

and calculated magnitudes can be attributed to viscous damping and

surface wave scattering into bulk waves which are not reflected.

Nonetheless, the analysis has predicted the reflection coefficient shape

and null frequencies quite well.

" i . . . .... . . . ... . . .. . . .. ...... ... . ... .... . ..... .. ...... ., .. .
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VI Conclusion 4

This work has modified and corrected the phased periodic array

scattering parameters for use as a single electrode (unit cell) scattering

matrix. The analytical expressions upon which this matrix is based are

functions of material constants, electrode geometry and frequency. These

single electrode, three port scattering matrices are acoustically cascaded

to produce an array scattering matrix which completely describes the

device, be it reflector, transducer or combination. The analysis takes

into account the effects of both piezoelectric and mechanical scattering

j and provides all device transfer functions versus frequency. By virtue of

the scattering matrix approach, the final 3-port matrix includes all finger

interactions such as acoustic reflections and electrical regeneration

regardless of individual electrode circuitry. The calculation is a

straight-forward procedure and is applicable to any uniform beam-width,

periodic electrode configuration (including the case of transducers with

floating electrodes). Good agreement with experimental data confirms this

approach to be a universal and accurate analysis tool.
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Appendix I.

A. Derivation of radiation conductance (Ga )

The conservation of energy for a lossless symmetrical interdigital

electrode requires the electrical input power to equal the total acoustic

output power. That is, with a voltage V applied
G 22 12

Ga 2  .Re(m 33) V2 = IV 213 2 (Al)

2 2 2 Z0  2 Z0

dividing both sides by .2 gives
2

0 0

G 13 = 13 23 23 (A2)
a+

z0  zo

0 0

replacing * 13 and m 23 with

013 '-Z 031 M23 = -Zo "32 (A3)
2 2

from appendix I. B. gives equation (7)

Ga z "'5(m13" 31 + m23m 32) .  (A4)

'L
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B. Derivation of the relationship between m13 and m31

The relationship between mixed units and pure units scattering

matrices has been discussed for the two port case by Viggh [263. This

appendix extends his work to the three port case in order to derive the

relationship between the mixed units M13 and m31* For clarity of

presentation, the mixed units and pure acoustic scattering matrices will be

designated by (m) and [s, respectively.

The variables of the mixed units electrical port are voltage and

current. Their relationship to an acoustic representation is via

3 3 3 (A5)
Z0 i3 =a 3 - b3

where Z0 is the electro-acoustic charactersitic impedance (8). The problem

is to write the three port acoustic scattering matrix (where ai and bi are

the input and output acoustic wave potentials, respectively)

b2  "i21 22 3s23 a 2  (A6)

b3 _ Ls 31 332 s333 a-3 -

in terms of the mixed units matrix (similar to (1))

Eli 1m 2 m13i [a 1
b2 '21 M22 M23 a2

i 3 ! 2 3 3

i -
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Starting with the third mixed units equation, insert (A5) for the current

and voltage

a3 - b 3 m31a+ m32a2 + m33 (a3 + b3) (M)

z0

Rearranging terms and solving for b3 produces the third acoustic scattering

e q u a t i o n ZZ1 
_b3  -Z0 m3 1  a1 + Z0 m3 2  a2 "0m33 a3  (A)

1 Zom3 3  1 Zom 33  1Z 0m33

The next step uses the first mixed equation to produce the first acoustic

equation

bl = m 1 1a1  m1 2a2 + m 13v 3  (AlO)

a m11a1 + m12a2 + m13 (a3 + b3).

From (A6) we know

b3 = 31a, + 32 a2 + 33.a3  (All)

and therefore,

b1 z (m1 1  m1 3s3 1)a1 + (m12 + m13s32 )a2  m13(1 + s33 )a3

(A12)

A similar equation exists for b2.

t.p



53

In summary, the acoustic scattering matrix [s] (A6) in terms of the

mixed units representation is

bl (m (11 m13331 ) (M12 + m 13s32) m 13 (1+3s33 ) a 1

b2 (21 + m2331) ( 2 2 
+ m2332) 23 (1+s33) a2

b -Z 0m3 1  -Z0m32  1-Z0m3 3  a
3 _____ ____-3

1+Zo= 3  1+Zo= 3  1+Zom33

(A13)

A symmetrical, lossless, r 3-port has the property that 13 -

3 31. Therefore, using the transformation (A13) we find

513(1 + 333) a -Z0'31 (Al4a)

l+zo. 33
and

a 13 2 -Z0"3 1  (Al4b)

l+Z0m3 3  1+Zom 3 3

producing the desired result

0 -Zm i3 1  (A1S)

2

L,..
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Appendix II. Scattering Matrix Cascading

The problem addressed in this appendix is to find the resultant

acoustic potentials B1 , A3 and the currents produced for the case where the

incident acoustic potentials A,, B3 and the voltages applied are known. In

this case the imaginary admittance is known and the largest matrix is N+2

by 3.

The first scattering matrix (which could be the entire matrix [M] to

the left of this point) is written in equation form as

B1 = M1 1A1 + M12B2 + M13VT

A2 = M2 1A1 + M2 2B2 + M2 3VT (A16)

I, Z M31A1 +M 32B2 + M 33VT

where the M13 have been multiplied by the tap weight (ie. the voltage

applied as a fraction of the terminal voltage). The set of equations

characterizing the tap to be appended is

B2 = M11A2 + m12B3 + m13VT
A3 _ m2 1A2 + m22 B3 + m2 3VT (Al7)

12 = m3 1A2 +3 m 2 B3 + m33VT

Comparing the matrix equations shows that there are two equations that

contain A2 in terms of B2 and the known quantities (incident acoustic waves

and voltage tap weights). These are solved as follows, taking the second

set first

B2 2 m11A2 + m12B3 + m13VT (Al8a)

inserting an equation for A2 gives

B2 . m11 (M2 1A1 + M22B2 + M23) + m12B3 + m13VT (Al8b)

,..,A *
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and

B2 = m1 1 (M2 1 A1 + M)23 + m12B3 + m13VT  (Al8c)
1 - m 1 1M 2 2

which is written as

B2  C1A1 + C2B3 + C3VT (A19)

where
C1 = ml1 MN2 1  (2a

1 - m11 M2 2  (A2Oa)

C2 _- 12 (A2Ob)
1 - m

=m1 1 23 +mlvT (A2c)

1 - M1 1 2 2

Similarly

A2 z M 2 1A1 e M22B2 + M23VT  (A21a)

is written as

A2 = DIAI + D2B3 + D3VT (A21b)

where

D, - H2 1 + M22 C 1  
(A22a)

D 2 = M22C2  (A22b)

D3 = M22C3 + M23  (A22c)

These solutions are inserted into the proper equations in the two matrices

(A16, A17) and a new 3 by 4 array matrix is created in terms of the new

input parameters

B1 = H11A 1 + M12(C1 A1 + C2B3 e C) + M13V T

A3 m211(D11 3 B3D2 3 D3 + m2 2B3 + m23VT (A23)

I, M H31A 1  + M32 (C1A1 + C2B3  + C3) + M3 3vT

12 3 1 (D1 A1 + D2B3 + D3) + m32B3 + m33VT
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Therefore a new M matrix of the form

ll +. C1M12  C2M12  C3M12  13

D1m2 1  D2m2 1 + i22  D3m21 
+ 23 (A24)

N 3 1 + C1M3 2  C2M32  C3 M32 + M33

D1M3 1  D2m3 1 + in3 2  D3m31 + m33

I33
has been created from the original two scattering matrices. This matrix

relates the input acoustic potentials (A1 ,B3 ) and the terminal voltage

applied (VT) to the output acoustic potentials (A3, BI) and the currents

produced. The procedure can be carried out for N taps with a resulting N+2

by 3 scatter matrix for the entire array.
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